日韩视频在线精品视频免费观看-日韩视频在线观看中字-日韩视频在线观看一区-日韩视频在线观看免费-日韩视频在线观看-日韩视频在线播放

產品分類

當前位置: 首頁 > 工業控制產品 > 運動控制 > 直流電動機

類型分類:
科普知識
數據分類:
直流電動機

Motor Calculations

發布日期:2022-04-26 點擊率:78

  • Calculating Mechanical Power Requirements

  • Torque - Speed Curves

  • Numerical Calculation

  • Sample Calculation

  • Thermal Calculations

Calculating Mechanical Power Requirements

In dc motors, electrical power (Pel) is converted to mechanical power (Pmech). In addition to frictional losses, there are power losses in Joules/sec (Iron losses in coreless dc motors are negligible).

Pel = Pmech + Pj loss

Physically, power is defined as the rate of doing work. For linear motion, power is the product of force multiplied by the distance per unit time. In the case of rotational motion, the analogous calculation for power is the product of torque multiplied by the rotational distance per unit time.

Prot = M x ω

Where:

Prot = rotational mechanical power
M = torque
ω = angular velocity

The most commonly used unit for angular velocity is rev/min (RPM). In calculating rotational power, it is necessary to convert the velocity to units of rad/sec. This is accomplished by simply multiplying the velocity in RPM by the constant (2 x ∏) /60:

ωrad = ωrpm x (2∏)/60

It is important to consider the units involved when making the power calculation. A reference that provides conversion tables is very helpful for this purpose. Such a reference is used to convert the torque-speed product to units of power (Watts). Conversion factors for commonly used torque and speed units are given in the following table. These factors include the conversion from RPM to rad/sec where applicable.

Torque UnitsUnits SpeedConversion Factor
oz-inRPM0.00074
oz-inrad/sec0.0071
in-lbRPM0.0118
in-lbrad/sec0.1130
ft-lbRPM0.1420
ft-lbrad/sec1.3558
N-mRPM0.1047

For example, assume that it is necessary to determine the power required to drive a torque load of 3 oz-in at a speed of 500 RPM. The product of the torque, speed, and the appropriate conversion factor from the table is:

3oz-in x 500rpm x 0.00074 = 1.11 Watts

Calculation of power requirements is often used as a preliminary step in motor or gearmotor selection. If the mechanical power required for a given application is known, then the maximum or continuous power ratings for various motors can be examined to determine which motors are possible candidates for use in the application.

Torque - Speed Curves

One commonly used method of displaying motor characteristics graphically is the use of torque – speed curves. While the use of torque - speed curves is much more common in technical literature for larger DC machines than it is for small, ironless core devices, the technique is applicable in either case. Torque – speed curves are generated by plotting motor speed, armature current, mechanical output power, and efficiency as functions of the motor torque. The following discussion will describe the construction of a set of torque – speed curves for a typical DC motor from a series of raw data measurements. Motor 1624009S is used as an example.

Assume that we have a small motor that we know has a nominal voltage of 9 volts. With a few fundamental pieces of laboratory equipment, the torque - speed curves for the motor can be generated:

Step One (measure basic parameters):

Using a voltage supply set to 9 volts, run the motor unloaded and measure the rotational speed using a non-contacting tachometer (strobe, for instance). Measure the motor current under this no-load condition. A current probe is ideal for this measurement since it does not add resistance in series with the operating motor. Using an adjustable torque load such as a small particle brake coupled to the motor shaft, increase the torque load to the motor just to the point where stall occurs. At stall, measure the torque from the brake and the motor current. For the sake of this discussion, assume that the coupling adds no load to the motor and that the load from the brake does not include unknown frictional components. It is also useful at this point to measure the terminal resistance of the motor. Measure the resistance by contacting the motor terminals. Then spin the motor shaft and take another measurement. The measurements should be very close in value. Continue to spin the shaft and take at least three measurements. This will ensure that the measurements were not taken at a point of minimum contact on the commutator.

Now we have measured the:

  • n0= no-load speed

  • I0= no-load current

  • MH= stall torque

  • R= terminal resistance

Step Two (plot current vs. torque and speed vs torque):

Prepare a graph with motor torque on the horizontal axis, motor speed on the left vertical axis, and motor current on the right vertical axis. Scale the axes based on the measurements in step 1. Draw a straight line from the left origin of the graph (zero torque and zero current) to the stall current on the right vertical axis (stall torque and stall current). This line represents a plot of the motor current as a function of the motor torque. The slope of this line is the proportionality constant for the relationship between motor current and motor torque (in units of current per unit torque). The reciprocal of this slope is the torque constant of the motor (in units of torque per unit current). For the resulting curves see Graph 1.

For the purpose of this discussion, it will be assumed that the motor has no internal friction. In practice, the motor friction torque is determined using the torque constant of the motor and the measured no-load current. The torque vs speed line and the torque vs current line are then started not at the left vertical axis but at an offset on the horizontal axis equal to the calculated friction torque.

Step Three (plot power vs torque and efficiency vs torque):

In most cases, two additional vertical axes are added for plotting power and efficiency as functions of torque. A second left vertical axis is usually used for efficiency and a second right vertical axis is used for power. For the sake of simplifying this discussion, efficiency vs. torque and power vs. torque will be plotted on a second graph separate from the speed vs. torque and current vs. torque plots.

Construct a table of the motor mechanical power at various points from no-load to stall torque. Since mechanical power output is simply the product of torque and speed with a correction factor for units (see section on calculating mechanical power requirements), power can be calculated using the previously plotted line for speed vs. torque. A sample table of calculations for motor M2232U12G is shown in Table 1. Each calculated point is then plotted. The resulting curve is a parabolic curve as shown in Graph 1. The maximum mechanical power occurs at approximately one-half of the stall torque. The speed at this point is approximately one-half of the no-load speed.

Construct a table of the motor efficiency at various points from no-load to stall torque. The voltage applied to the motor is given, and the current at various levels of torque has been plotted. The product of the motor current and the applied voltage is the power input to the motor. At each point selected for calculation, the efficiency of the motor is the mechanical power output divided by the electrical power input. once again, a sample table for motor M2232U12G is shown in Table 1. and a sample curve in Graph 1. Maximum efficiency occurs at about 10% of the motor stall torque.

Table 1
TorqueSpeedCurrentPowerEfficiency
(oz-in)(rpm)(mA)(Watts)(%)
0.02511,247.650.0240.2080.10
0.0510,786.30.0480.39971.87
0.07510,324.850.0720.57375.27
0.19,863.60.0960.73074.99
0.1259,402.250.1200.87073.25
0.158,940.90.1440.99270.78
0.1758,479.550.1681.09867.89
0.28,018.20.1921.18764.73
0.2257,556.850.2171.25861.40
0.257,095.50.2411.31357.95
0.2756,634.150.2651.35054.41
0.36,172.80.2891.37050.80
0.3255,711.450.3131.37447.14
0.3255,711.450.3371.36043.44
0.355,250.10.3371.36043.44
0.3754,788.750.3611.32939.71
0.44,327.40.3851.28135.95
0.4253,866.050.4091.21632.17
0.453,404.70.4331.13428.37
0.4752,943.350.4571.03524.56
0.52,4820.4810.91820.74
0.5252020.650.5050.78516.90
0.551,559.30.5290.63513.05
0.5751,097.950.5770.2835.34
0.6636.60.5770.2835.34
0.625175.250.6020.0811.47

Graph 1

Numerical Calculation
For an iron-less core, DC motor of relatively small size, the relationships that govern the behavior of the motor in various circumstances can be derived from physical laws and characteristics of the motors themselves. Kirchoff's voltage rule states, "The sum of the potential increases in a circuit loop must equal the sum of the potential decreases." When applied to a DC motor connected in series with a DC power source, Kirchoff's voltage rule can be expressed as "The nominal supply voltage from the power source must be equal in magnitude to the sum of the voltage drop across the resistance of the armature windings and the back EMF generated by the
motor.":

V0 = (I x R) + Ve

Where:

Vo = Power supply (Volts)
I = Current (A)
R = Terminal Resistance (Ohms)
Ve = Back EMF (Volts)

The back EMF generated by the motor is directly proportional to the angular velocity of the motor. The proportionality constant is the back EMF constant of the motor.

Ve = ω x Ke

Where:

ω= angular velocity of the motor
ke = back EMF constant of the motor

Therefore, by substitution:

Vo = (I x R) + (ω x Ke)

The back EMF constant of the motor is usually specified by the motor manufacturer in volts/RPM or mV/RPM. In order to arrive at a meaningful value for the back EMF, it is necessary to specify the motor velocity in units compatible with the specified back EMF constant. The motor constant is a function of the coil design and the strength and direction of the flux lines in the air gap. Although it can be shown that the three motor constants normally specified (back EMF constant, torque constant, and velocity constant) are equal if the proper units are used, calculation is facilitated by the specification of three constants in the commonly accepted units.

The torque produced by the rotor is directly proportional to the current in the armature windings. The proportionality constant is the torque constant of the motor.

Mo = I x Km

Where:
Mo = torque developed at rotor
kM = motor torque constant

Substituting this relationship:

V = (M x R)/Km +(ω x Ke)

The torque developed at the rotor is equal to the friction torque of the motor plus the resisting torque due to external mechanical loading:

M0 = Ml + Mf

Where:
Mf = motor friction torque
Ml = load torque

Assuming that a constant voltage is applied to the motor terminals, the motor velocity will be directly proportional to sum of the friction torque and the load torque. The constant of proportionality is the slope of the torque-speed curve and can be calculated by:

Δn/ΔM = n0 / MH

Where:
MH = stall torque
n0= no-load speed

An alternative approach to deriving this value is to solve for velocity, n:

n = (V0/Ke) - M/(kM x Ke)

Differentiating both sides with respect to M yields:

Δn/ΔM = -R / (kM x Ke)

Using dimensional analysis to check units, the result is:

-Ohms/(oz-in/A) x (V/RPM) = -Ohm-A-RPM/V-oz-in = -RPM/oz-in

It is a negative value describing loss of velocity as a function of increased torsional load.

Sample Calculation

Motor 1624T009S is to be operated with 9 volts applied to the motor terminals. The torque load is 0.2 oz-in. Find the resulting motor speed, motor current, efficiency, and mechanical power output. From the motor data sheet, it can be seen that the no-load speed of the motor at 12 volts is 11,700 rpm. If the torque load is not coupled to the motor shaft, the motor would run at this speed.

The motor speed under load is simply the no-load speed less the reduction in speed due to the load. The proportionality constant for the relationship between motor speed and motor torque is the slope of the torque vs. speed curve, given by the motor no-load speed divided by the stall torque. In this example, the speed reduction caused by the 0.2 oz -in torque load is:

0.2 oz-in x (11,700 rpm/.634 oz-in) = -3,690 rpm

The motor speed under load must then be:

11,700 rpm - 3,690 rpm = 8,010 rpm

The motor current under load is the sum of the no-load current and the current resulting from the load. The proportionality constant relating current to torque load is the torque constant (kM), in this case, 1.039 oz -in/A. In this case, the load torque is 0.2 oz-in, and the current resulting from the load must be:

I = 0.2 oz-in x 1 amp/1.039 oz -in = 192 mA

The total motor current must be the sum of this value and the motor no-load current. The data sheet lists the motor no-load current as 60 mA. Therefore, the total current is:

192 mA + 12 mA = 204 mA

The mechanical power output of the motor is simply the product of the motor speed and the torque load with a correction factor for units (if required). Therefore, the mechanical power output of the motor in this application is:

output power = 0.2 oz-in x 8,010 rpm x 0.00074 = 1.18 Watts

The mechanical power input to the motor is the product of the applied voltage and the total motor current in Amps. In this application:

input power = 9 volts x 0.203 A = 1.82Watts

Since efficiency is simply power out divided by power in, the efficiency in this application is:

efficiency = 1.18 Watts / 1.82 Watts = 0.65 = 65%

Thermal Calculations

A current I flowing through a resistance R results in a power loss as heat of I2R. In the case of a DC motor, the product of the square of the total motor current and the armature resistance is the power loss as heat in the armature windings. For example, if the total motor current was .203 A and the armature resistance 14.5 Ohms the power lost as heat in the windings is:

power loss = 0.2032 x 14.5 = 0.59 Watts

The heat resulting from I2R losses in the coil is dissipated by conduction through motor components and airflow in the air gap. The ease with which this heat can be dissipated is a function of the motor type and construction. Motor manufacturers typically provide an indication of the motor’s ability to dissipate heat by providing thermal resistance values. Thermal resistance is a measure of the resistance to the passage of heat through a given thermal path. A large cross section aluminum plate would have a very low thermal resistance, for example, while the values for air or a vacuum would be considerably higher. In the case of DC motors, there is a thermal path from the motor windings to the motor case and a second between the motor case and the motor environment (ambient air, etc.). Some motor manufacturers specify a thermal resistance for each of the two thermal paths while others specify only the sum of the two as the total thermal resistance of the motor. Thermal resistance values are specified in temperature increase per unit power loss. The total I2R losses in the coil (the heat source) are multiplied by thermal resistances to determine the steady state armature temperature. The steady state temperature increase of the motor (T) is given by:

Tinc = I2R x (Rth1 + Rth2)

Where:

Tinc = temperature increase
I = current through motor windings
R = resistance of motor windings
Rh1 = thermal resistance from windings to case
Rh2 = thermal resistance case to ambient

For example, a 1624E009S motor running with a current of 0.203 Amps in the motor windings, with an armature resistance of 14.5 Ohms, a winding-to-case thermal resistance of 8 °C/Watt, and a case-to-ambient thermal resistance of 39 °C/Watt. The temperature increase of the windings is given by:

T = .2032 x 14.5 x (8 + 39) = 28°C

If it is assumed that the ambient air temperature is 22°C, then the final temperature of the motor windings is 50°C (22° + 28°).

It is important to be certain that the final temperature of the windings does not exceed their rated value. In the example given above, the maximum permissible winding temperature is 100°C. Since the calculated winding temperature is only 50°C, thermal damage to the motor windings will not be a problem in this application. One could use similar calculations to answer a different kind of question. For example, an application may require that a motor run at its maximum torque without being damaged by heating. To continue with the example given above, suppose it is desired to run motor 1624E009S at the maximum possible torque with an ambient air temperature of 22°C. The designer wants to know how much torque the motor can safely provide without overheating. 

The data sheet for motor 1624E009S specifies a maximum winding temperature of 100°C. Since the ambient temperature is 22°C, a rotor temperature increase of 78°C is tolerable. The total thermal resistance for the motor is 47°C/Watt. By taking the reciprocal of the thermal resistance and multiplying this value by the acceptable temperature increase, the maximum power dissipation in the motor can be calculated:

P = 78° x 1 Watt/47° = 1.66 Watts

Setting I2R equal to the maximum power dissipation and solving for I yields the maximum continuous current allowable in the motor windings:

I2 = 2.19 Watts / 14.15 ohms
I2R = 2.19 Watts
I = .338 Amps

The motor has a torque constant of 1.86 oz-in/A and a no-load current of 60 mA. Therefore, the maximum current available to produce useful torque is .530 Amps (.590 - .060), and the maximum usable torque available (M) is given by:

M = .327 A x 1.309 oz-in/A = 0.428 oz-in

The maximum allowable current through the motor windings could be increased by decreasing the thermal resistance of the motor. The rotor-to-case thermal resistance is primarily fixed by the motor design. The case-to-ambient thermal resistance can be decreased significantly by the addition of heat sinks. Motor thermal resistances for small DC motors are usually specified with the motor suspended in free air. Therefore, there is usually some heat sinking which results from simply mounting the motor into a framework or chassis. Some manufacturers of larger DC motors specify thermal resistance with the motor mounted into a metal plate of known dimensions and material.

The preceding discussion does not take into account the change in resistance of the copper windings as a result of heating. While this change in resistance is important for larger machines, it is usually not significant for small motors and is often ignored for the sake of calculation.

下一篇: PLC、DCS、FCS三大控

上一篇: 索爾維全系列Solef?PV

推薦產品

更多
主站蜘蛛池模板: 激情无码人妻又粗又大 | 精品国产一区三区 | 在线播放免费人成毛片乱码 | 午夜剧场成人 | 成人午夜精品久久久久久久网站 | 99精品免费久久久久久久久 | 狠狠五月激情六月丁香 | 天堂国产精品 | 无码尹人久久相蕉无码 | 免费视频欧美无人区码 | 国产真实乱人偷精品 | 奇米影视第4色 | 高清毛片aaaaaaaaa郊外 | 免费羞羞午夜爽爽爽视频 | 成人免费无码大片a毛片抽搐色欲 | 亚洲视频久久 | 欧美一区成人 | 与子敌伦刺激对白播放 | 亚洲三级黄色 | 国产原创91 | 少妇玉梅抽搐呻吟 | 国产无套精品一区二区三区 | 一区二区三区四区在线观看视频 | www精品在线| 人妻体内射精一区二区三四 | 亚洲婷婷网 | 一边吃奶一边摸下边激情说说 | 国产成人精品综合 | 97久久精品人人澡人人爽古装 | 国产精品捆绑调教网站 | 午夜精品久久久久久久久久 | 超碰在线最新地址 | 美女啪啪无遮挡 | 狠狠干少妇 | 中文字幕日韩人妻在线视频 | 精品国产乱码久久久久久丨区2区 | 深爱激情av | 久久亚洲网| 欧美视频网站 | 中文字幕狠狠 | 色婷婷av一本二本三本浪潮 | 国产18处破外女 | 久久99精品久久久久婷婷 | 色综合久久久久无码专区 | 狠狠躁日日躁夜夜躁2022麻豆 | 欧美最黄视频 | 久热草 | 亚洲福利精品视频 | 日韩爱爱网 | 精品国产精品久久一区免费式 | 国产精品欧美日韩 | 爱草在线 | 国产成人精品自拍 | 国产夫妻在线观看 | 国产真实伦在线观看视频 | 中国极品少妇xxxxx | 国产微拍精品一区 | 一区二区三区免费观看 | 中文字幕av资源 | 欧美人与禽zozzo禽性配 | 亚洲欧美在线一区 | 亚洲精品成a人在线观看 | 毛片毛片毛片毛片毛片 | 成年人黄色大片大全 | 狠狠躁天天躁中文字幕无码 | 中文字幕精品久久久乱码乱码 | 一区免费视频 | 深夜网站在线观看 | 91av免费| www.国产区| 亚洲天堂一区在线 | 精品一区二区三区国产 | 国产精品传媒麻豆 | 久久综合丁香 | 日韩色综合网 | 一区二区三区波多野结衣 | 国产精品夫妻视频 | 欧美色插 | 一区精品在线 | 日本极品少妇 | 日本熟妇人妻xxxxx-欢迎您 | 丝袜理论片在线观看 | 亚洲精品乱码久久久久久按摩 | 亚洲国产精品一区第二页 | 欧美黄色大全 | 久草在线新时代的视觉体验 | 国产高清免费在线观看 | 粉嫩av在线 | 欧美日韩视频免费 | 成年人一级黄色片 | 色哒哒影院 | 国产超碰人人做人人爽av牛牛 | 久久天天躁夜夜躁狠狠85麻豆 | 欧美精品videos | 免费精品午夜 | 一道本一二三区 | 丰满饥渴的少妇hd | 国产一区二区三区在线视频 | 国产ts网站 | 欧美三级a | 国产综合久久 | 末成年娇小性色xxxxx | 伊人免费视频二 | 国产嫩草影院久久久久 | 成人国产欧美大片一区 | 国产日产欧产美韩系列麻豆 | 成人在线观看视频网站 | 中文字幕乱码av | 成在人线av | 亚洲中文字幕无码永久在线 | 日本亲子乱子伦xxxx60岁 | 无码国内精品人妻少妇蜜桃视频 | 国产白丝jk捆绑束缚调教视频 | 日韩国产免费 | 亚洲国产网 | 精品久久久精品 | 狼人av在线 | 免费在线观看亚洲 | 成人一区二| 亚洲午夜久久久精品一区二区三区 | 成年片色大黄全免费网站久久 | 亚洲高清av一区二区三区 | 国产精品国产免费无码专区不卡 | 亚洲国产一线二线三线 | 久久综合噜噜激激的五月天 | 在线播放日韩av | 精品热久久 | 黄色aa一级片 | 91精品国产综合久久久久久软件 | 性xxxxx大片免费视频 | 久久久久久九九九九 | 久久久久久久久久久久久女国产乱 | 成年片在线观看 | 亚洲精品女人久久久 | 免费的一级黄色片 | 国产精品人成在线观看 | 无码纯肉视频在线观看 | 久久久亚洲最大ⅹxxx | 亚洲欧美自拍偷拍视频 | 欧美激情第三页 | 欧美性受xxxx狂喷水 | 日韩有码中文字幕在线观看 | 欧美大片抢先看 | 亚洲最大的成人网站 | 欧美日韩理论片 | 东北少妇不带套对白 | 在线 国产 欧美 亚洲 天堂 | 亚洲国产日韩精品 | 少妇第一次交换又紧又爽 | 深夜福利在线免费观看 | 日本高清视频在线www色 | 久久人人爽人人爽人人片av东京热 | 久久亚洲精品中文字幕无男同 | av无码精品一区二区三区 | 91福利免费视频 | 国产精品久久久久久亚洲徐婉婉 | 免费av在 | 成人vr视频在线观看 | 色激情五月 | 亚洲欧洲美洲精品一区二区三区 | 欧美色综合天天久久综合精品 | 香蕉视频在线网站 | 国产又黄又硬又粗 | 手机在线观看免费av | 91干干| 人妻少妇中文字幕久久 | 亚洲69视频| 91亚洲国产精品 | 精品国产一二三产品价格 | 国产乱对白刺激视频 | 亚洲精品午夜无码专区 | 日欧137片内射在线视频播放 | 日本护士毛茸茸高潮 | 不卡av免费| 日本一区二区在线免费 | 7777色鬼xxxⅹ欧美色妇 | 欧美区视频 | 久久精品亚洲国产 | 少女高清影视在线观看动漫 | 一杯热奶茶的等待 | 国产精品96| www伊人久久| 欧美videos另类精品 | 97夜夜澡人人爽人人喊91洗澡 | 国产黄色大全 | 草逼免费视频 | 香蕉传媒| 久久夜色噜噜噜av一区二区 | 美日韩一级 | 欧美综合网 | 国产成人精品亚洲7777 | 国产在线拍揄自揄拍视频 | 国产aⅴ夜夜欢一区二区三区 | 国产成人精品999 | 欧美日韩二三区 | 双性精跪趴灌满h室友4p视频 | hd国产人妖ts另类视频 | 中字幕人妻一区二区三区 | 亚洲色图少妇 | 国产成人无码精品久久久露脸 | 日本高清裸体私密写真集 | 日本黄樱花超清视频 | 亚洲国产成人av毛片大全 | 骚视频在线观看 | 亚洲国产成人久久综合碰 | 日韩色综合 | 美女福利视频 | 成人本色视频在线观看 | 国产精品高清一区二区三区不卡 | 69er小视频| 亚洲一区在线视频 | 午夜秋霞影院 | 天天鲁一鲁摸一摸爽一爽 | 国产免费丝袜调教视频 | 免费亚洲精品 | 少妇的丰满3中文字幕 | 强奷人妻日本中文字幕 | 精品国产一区二区三区小蝌蚪 | 国产免费又硬又黄又爽的视频喷水 | 精品人妻久久久久久888 | 中文字幕av免费在线观看 | 国产欧美又粗又猛又爽 | 呦系列视频一区二区三区 | 日韩手机看片 | 337p日本欧洲亚洲大胆色噜噜 | 蜜臀av中文字幕 | 1000部夫妻午夜免费 | 麻豆成人免费 | 色妞网| 久久久久久av无码免费网站 | 97色在线观看免费视频 | 欧美三级一区二区 | 91亚洲一区 | 99久久精品免费看国产 | 羞羞网站在线看 | 美女极度色诱视频国产 | eeuss亚洲精品久久 | 国产免费叼嘿网站免费 | 日本少妇爱做按摩xxxⅹ | 日本饥渴人妻欲求不满 | 国产精品丝袜一区二区 | 久久亚洲国产成人精品性色 | 中文字幕88 | 天天做天天爱夜夜爽毛片毛片 | 成人三级在线播放 | 精品国产一区二区三区av片 | 亚洲日韩中文字幕一区 | 4438xx亚洲最大五色丁香一 | 亚洲乱码国产乱码精品精小说 | 又大又长粗又爽又黄少妇毛片 | 国产男女无遮挡猛进猛出 | 亚洲乱码国产乱码精品天美传媒 | 日韩欧美成人一区二区三区 | 色婷婷激情一区二区三区 | 日日夜夜婷婷 | 丰满大乳伦理少妇 | 国产在线视频不卡 | 国产日韩欧美高清 | 男人网站在线观看 | 91porny九色| 亚洲天堂精品在线观看 | 欧美巨大巨粗黑人性aaaaaa | 久久久成人精品视频 | 97人人超碰国产精品最新o | 亚洲国产精品97久久无色 | 国产嫩草一区二区三区在线观看 | 美女隐私免费 | 精品久久久久久亚洲 | 国产美女视频免费观看的软件 | 成人在线影片 | 黄网址在线观看 | 中文字幕精品一区二区精品 | 综合色婷婷一区二区亚洲欧美国产 | 成人天堂网 | av高清免费观看 | 5x社区sq未满十八视频在线 | 国产成人18黄网站 | 大j8福利视频导航 | 亚洲色中色 | 国产精品毛片一区二区三区 | 欧美日韩精品久久久免费观看 | 亚洲成av人片天堂网无码】 | 国产农村乱子伦精品视频 | 日韩视频三区 | 91精品久久久久久久久99蜜臂 | 日本一级待黄大片 | 亚洲色图第1页 | 亚洲va国产va天堂va久久 | 日日草天天干 | 国产成人精品久 | 日韩顶级毛片 | 亚洲精品少妇30p | 亚洲欧洲激情 | 91av久久| 男女啪祼交视频 | 日本大乳高潮xxxxx | 国产一区二区视频网站 | 人人摸人人搞人人透 | 91重口免费版 | 国产精品久久久久久无码 | 放荡的少妇2欧美版 | 女人下边被添全过视频 | a毛片网站| 精品一级少妇久久久久久久 | 解开乳罩喂领导吃奶 | 啪啪亚洲| 欧美成人三级在线播放 | 欧美色999 | 欧美激情一二区 | av免费在线播放网站 | 日韩人妻无码一区二区三区综合部 | 1000部羞羞视频在线看视频 | 风韵丰满熟妇啪啪区老老熟妇 | 三上悠亚精品一区二区 | 日本韩国一级淫片a免费 | 久久中文字幕在线观看 | 中国三级视频 | 又大又长粗又爽又黄少妇毛片 | 天堂网www网在线最新版 | 日韩欧美啪啪 | 啪啪黄色网址 | 一区二区三区免费观看 | 国产精品亚洲欧美日韩久久制服诱 | 女女女bbbbbb毛片在线法国 | 久久狠狠高潮亚洲精品 | 伊人久久大香线蕉av一区 | 快色视频在线观看 | 国产va免费精品高清在线观看 | 亚洲国产精品一区二区www | 国产男女视频网站 | 久久机热这里只有精品 | 粉嫩av一区二区三区入口 | 人人插人人 | 国产suv精品一区二区883 | 日韩成人短视频 | 新亚洲天堂 | 欧美男生射精高潮视频网站 | 亚洲男人的天堂在线视频 | 国产呻吟对白刺激无套视频在线 | 日本成人毛片 | 色999日韩| 精品一区二区三区在线播放 | 亚洲第一激情 | 日韩在线小视频 | 国产精品久久久久久久久免费 | 国产乱码一二三区精品 | www.天天色| 黄色在线观看av | 欧美人妖一区 | 免费一级片网站 | 免费在线 | 国产精品视频久久久久久久 | 欧美国产激情 | 香蕉网址 | 日韩精品无码人妻一区二区三区 | 三级黄色网 | 久久中文骚妇内射 | 在线精品亚洲欧美日韩国产 | 欧洲精品在线观看 | 婷婷六月久久综合丁香 | 国产一级伦理片 | 久久久久久国产 | 55夜色66夜色国产精品视频 | 中文字幕亚洲精品日韩 | 久久国产小视频 | 人人草网| 五月天免费网站 | 久热这里只有 | 91久久香蕉国产日韩欧美9色 | 国产视频a在线观看 | 粉嫩av一区二区三区免费看 | 黑人粗硬进入过程视频 | 国产好爽又高潮了毛片91 | 国产精品久久久久久久 | 91精品网站 | 免费asmr色诱娇喘呻吟欧美 | 久久中文在线 | 天天操天天干天天舔 | 女人性做爰24姿势视频 | 久久伊人精品 | julia一区| 熟女人妻aⅴ一区二区三区60路 | 国产刺激的三3p交换视频 | 新版资源天堂中文 | swag国产精品一区二区 | 一区二区三区在线视频播放 | 一级性生活免费视频 | 亚洲欧美激情在线 | 成人国产在线 | 韩国三级bd高清中字2021 | 69久久久 | 国产精品亚洲成在人线 | 国产黄色大片视频 | 午夜一二三区 | 亚洲国产网址 | 毛片麻豆| 国产ts人妖系列张思妮在线观看 | 欧美激情一区二区三区蜜桃视频 | 色综合色狠狠天天综合色 | 樱桃国产成人精品视频 | 国产亚洲日韩欧美一区二区三区 | 毛片一区二区三区 | 天天射综合 | 精品国产一区二区三区不卡 | 少妇高潮无套无遮挡内谢小说 | 亚洲精品成a人在线 | 18禁网站免费无遮挡无码中文 | 成人免费黄色小视频 | 日本乱轮视频 | 激情综合图 | youjizz.com国产 | 黄色av高清 | 中文天堂在线www | 国产精品永久久久久 | av片免费| 中文字幕在线观看视频www | 国产免费人人看 | 国产一区二区在线视频 | 精品一区二区三区东京热 | 国产成a人片在线观看视频下载 | 闺蜜互慰吃奶互揉69式磨豆腐 | 69精品久久久久久久 | 成–人–黄–色–网–站 | 九色一区| 福利小视频在线 | 亚洲午夜精品一区二区三区 | 欧美日韩一本 | 中文字幕亚洲国产 | 红桃成人少妇网站 | av激情在线| 久久久久久久久久久久久女过产乱 | 99久久久无码国产精品免费 | 免费无码一区二区三区a片百度 | 成人国内精品久久久久影院vr | 久久中文字幕免费 | 欧美午夜在线 | 亚洲精品国产精品国自产网站 | 人妻无码一区二区三区 | 国产欧美日韩亚洲 | 国产精选第一页 | 蜜桃视频一区二区在线观看 | 久久久久免费精品国产小说色大师 | 男人的天堂免费视频 | 综合色久 | 成人片黄网站a毛片免费 | 丁香婷婷综合激情五月色 | 欧美一级一区二区三区 | 精久久久 | 日产国产精品亚洲系列 | 欧美亚洲日本在线 | 国产精品久久久久永久免费看 | 成人国产精品免费网站 | 99精品久久毛片a片 在线亚洲高清揄拍自拍一品区 | 久久国产香蕉 | 久久九九热 | 国产91精品高潮白浆喷水 | 帮老师解开蕾丝奶罩吸乳网站 | 久久亚洲精品成人无码网站 | 国产伦精品一区二区三区免费 | 成人免费在线观 | 九色91porny| 一区二区三区无码视频免费福利 | 在线看h网站 | 三级4级全黄60分钟 午夜成人1000部免费视频 | 成人在线h| 日本强伦姧人妻一区二区 | 亚洲天堂一二三 | 欧洲少妇bbbbb曰曰 | 黄色片久久 | 日韩视频免费观看高清 | 三男玩一个饥渴少妇爽叫视频播放 | 久久久久爽人综合网站 | 综合精品一区 | 久久看视频只这 | 九久久久久 | 欧洲熟妇色xxxx欧美老妇多毛 | 精品国产一区二区三区四区 | 国产h在线| av在线浏览 | 美女88av | 欧美xo影院 | 91精品久久久久久久久久 | 国产精品亚洲自拍 | 久久中文精品 | 欧美在线一区二区三区 | 久久亚洲二区 | 国产又黄又爽又猛免费视频网站 | 中文字幕第7页 | 国产97色 | 无码视频在线观看 | 在线视频激情小说 | 欧美性xxxx在线播放 | 麻豆av免费在线观看 | 国产女主播在线一区二区 | 爽插| 免费人成网站视频在线观看 | www.天天干.com| 爱射网| 中文永久免费观看 | 国产又粗又猛又爽又黄的视频一 | 一二区视频| 中文成人无码精品久久久不卡 | 五月天导航 | 韩国边摸边做呻吟激情 | 国产视频中文字幕 | 午夜精品免费视频 | 一区二区久久久 | 日韩视频在线观看 | 少妇高潮太爽了在线观看 | 成年人免费网站 | 亚洲福利视频一区 | 狠狠色丁香久久婷婷综合_中 | 干干操操 | 国产成人精品123区免费视频 | 美丽肉奴隷1986在线观看 | 热久久精| 亚洲精品国产一区二区在线观看 | 国产精品久久久久久久久久久新郎 | 免费毛片小视频 | 亚洲人午夜色婷婷 | 好吊妞视频在线观看 | 亚洲精品久久酒店 | 中文字幕欧美激情 | 色屋永久 | aaa a特级黄| 在线区| √天堂资源在线 | 亚洲精品午夜 | 日本高清不卡aⅴ免费网站 久久精品国产av一区二区三区 | a视频免费在线观看 | 已婚少妇美妙人妻系列 | 午夜肉伦伦影院九七影网 | 国产一区二区三区四区三区 | 日日夜夜精品视频免费 | 欧美性猛烈 | 西西人体www44rt大胆高清 | 丰满亚洲大尺度无码无码专线 | 久草福利资源 | 成人字幕 | 特级黄色视频毛片 | 伊人春色在线视频 | 一级α片免费看刺激高潮视频 | 天干天干天啪啪夜爽爽av小说 | 亚洲成人999 | 绯色av中文字幕一区三区 | 午夜在线免费观看 | 无码h黄肉动漫在线观看 | av手机天堂 | 国产午夜在线观看 | 日韩深夜视频 | 曰韩精品一区二区 | 日韩av一区二区三区在线 | 毛茸茸绝色孕妇孕交 | 天堂中文字幕av | 亚洲 小说区 图片区 都市 | 成人免费视频一区二区三区 | 国产又粗又长 | 男人猛吃奶女人爽视频 | 69堂成人精品免费视频 | 极品少妇xxx | av免费在线播放网站 | 国产精品久久久久久久久免费 | 艳妇乳肉豪妇荡乳在线观看 | 国产一区二区毛片 | av在线你懂的 | 人妻 偷拍 无码 中文字幕 | 色噜噜视频 | 亚洲狼人av | 精品亚洲成a人无码成a在线观看 | 欧美一级日韩 | 色婷婷激情综合 | 国产人妻人伦精品1国产盗摄 | 暖暖 在线 日本 免费 中文 | 青娱乐av在线 | 76少妇精品导航 | 人妻夜夜爽天天爽三区麻豆av网站 | 乱亲女h秽乱长久久久 | 国产精品精品 | 亚洲偷偷 | 一区二区欧美精品 | 中文在线日韩 | 国产精品二区一区二区aⅴ污介绍 | 欧美激情喷水 | 亚洲一二三区av | 欧美肥妇视频 | 超碰97人人人人人蜜桃 | 久久久久夜夜夜精品国产 | 狠色综合| 永久免费观看美女裸体的网站 | 成人免费8888在线视频 | 国产下药迷倒白嫩丰满美女j8 | 69堂国产成人免费视频 | 国产99免费 | 加勒比日本在线 | 欧美成人精精品一区二区三区 | 国产femdom调教7777 | 精品熟女碰碰人人a久久 | 欧美另类视频 | 欧美a级网站 | 伊人久久大香线蕉av超碰演员 | 国产第113页 | 无码专区人妻系列日韩精品 | 亚洲精品天堂久久久老牛 | √天堂在线 | 国产偷国产偷亚洲高清人 | 成人一级黄色毛片 | 99热最新在线 | 国产口爆吞精在线视频 | 日日夜夜爱爱 | 无码中文字幕日韩专区 | いいなり北条麻妃av101 | 国产露脸精品国产沙发 | 性丰满白嫩白嫩的hp124 | 中文字幕乱码亚洲精品一区 | 国产高清日韩 |